If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-130=0
a = 1; b = 15; c = -130;
Δ = b2-4ac
Δ = 152-4·1·(-130)
Δ = 745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{745}}{2*1}=\frac{-15-\sqrt{745}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{745}}{2*1}=\frac{-15+\sqrt{745}}{2} $
| M=n/2 | | X+3+x-2=x+4 | | X2-6x+8=4-x | | 9x+7x=360 | | (1/4x-3)(1/4x+2)(x-5)=0 | | 11x+17x-8+2=-3x+2-8 | | 44=(3.14)d | | x3+4x2-25x-100=0 | | -3x+-4=-16 | | y+4/7=5/6 | | y+4/7=5/6 | | (3k-1)^2=-8 | | x2+4x-25=100 | | 1x+4=25 | | Z(x+9)(4x+2)=0 | | 4x2+7x-2=0 | | 46-2r+3r=54 | | -1x+7=10 | | 1250/(1.04^x)=500 | | 6^z-2=216 | | 2q^2+6q-7=0 | | 1/2x=-61/6 | | 80+x-0.2x=0 | | 3m^2+3m-90=0 | | 8t^2-16t-24=0 | | x=12=6 | | -6-3x=-39 | | x3+7x2-18x=0 | | 19x-2-7x=31+6×-15 | | ?x10=276 | | 2(x-1)+2=4x-6 | | 11(2x-1)=8(2x+1)+29 |